Por Marcelo Murilo, Co-Fundador e VP de Inovação e Tecnologia do Grupo Benner.
A inteligência artificial (IA) está no centro de uma das maiores revoluções tecnológicas da nossa era, transformando indústrias e redefinindo modelos de negócios. No entanto, é crucial perguntar: a sua estratégia de IA é um movimento desesperado para agradar o mercado ou uma abordagem estruturada, com métricas claras e foco em resultados concretos?
Nos últimos anos, a inteligência artificial (IA) deixou de ser uma tecnologia emergente para se tornar uma força motriz na transformação digital das empresas. A promessa de eficiência operacional, inovação em produtos e serviços, e insights valiosos a partir de grandes volumes de dados, tem impulsionado investimentos massivos em IA em todos os setores. Estimativas recentes da International Data Corporation (IDC) projetam que os gastos globais com IA alcançarão a marca de US$ 500 bilhões até 2024, um aumento substancial em relação aos US$ 342 bilhões registrados em 2021.
Essa corrida para adotar IA é impulsionada não apenas pelo potencial de transformação, mas também pela pressão competitiva. Organizações em todo o mundo sentem a necessidade de incorporar IA para não ficarem para trás, especialmente quando competidores estão relatando ganhos significativos de eficiência e novas capacidades habilitadas pela IA. No entanto, a rapidez com que muitas empresas estão adotando essa tecnologia levanta preocupações sobre a profundidade de seu planejamento e compreensão.
O mercado global de IA tem mostrado um crescimento exponencial, com empresas relatando melhorias significativas em áreas como atendimento ao cliente, manutenção preditiva e otimização de cadeias de suprimento. Relatórios da McKinsey indicam que 57% das empresas que adotaram IA observaram um aumento na produtividade, enquanto 45% relataram melhorias substanciais na experiência do cliente.
Contudo, a adoção desenfreada de IA sem uma estratégia bem delineada pode levar a desilusões. O Hype Cycle do Gartner para IA ilustra bem essa situação, onde muitas tecnologias emergentes passam pelo “Pico de Expectativas Infladas” antes de entrar no “Vale da Desilusão”. Isso ocorre quando as limitações da tecnologia se tornam evidentes e as expectativas não são atendidas, resultando em frustração e perdas financeiras.
Além disso, a implementação de IA não é isenta de desafios técnicos e culturais. A integração de sistemas de IA com as infraes